ترجمه مقاله "روشهای MCMC برای مدل های اميخته خطی تعمیم يافته چند-پاسخی: بسته MCMCglmm "

ترجمه مقاله "روشهای MCMC برای مدل های اميخته خطی تعمیم يافته چند-پاسخی: بسته MCMCglmm " چکیده مدل آمیخته خطی تعمیم یافته یک چارچوب انعطاف پذیر برای مدل سازی طیف وسیعی از اطلاعات فراهم می کند، هر چند که با متغیرهای پاسخ دهی غیر-گاوسی نمی توان احتمال را در قالب بسته به دست آورد. روش زنجیره مارکوف مون

ترجمه مقاله "روشهای MCMC برای مدل های اميخته خطی تعمیم يافته چند-پاسخی: بسته MCMCglmm "

چکیده

مدل آمیخته خطی تعمیم یافته یک چارچوب انعطاف پذیر برای مدل سازی طیف وسیعی از اطلاعات فراهم می کند، هر چند که با متغیرهای پاسخ دهی غیر-گاوسی نمی توان احتمال را در قالب بسته به دست آورد. روش زنجیره مارکوف مونت کارلو با نمونه برداری از یک سری از توزیع های شرطی ساده که می تواند مورد بررسی قرار گیرد، این مشکل را حل میکند. بسته MCMCglmm R ، چنین الگوریتمی را برای طیف وسیعی از مشکلات برازش مدل اجرا میکند. بیش از یک متغیر پاسخ می تواند به طور همزمان مورد تجزیه و تحلیل قرار گیرد ، و این متغیرها مجاز به پیروی از توزیع گاوسی، پواسون، چند (دو) اسمی، نمایی، تورم صفر و سانسور شده است. طیف وسیعی از سازه ها واریانس برای اثرات تصادفی مجاز هستند، از جمله تعامل با متغیرهای قياسى و یا پيوسته (به عنوان مثال، رگرسیون تصادفی) و ساختار واریانس پیچیده تر که از طریق دودمان مشترک بوجود می آیند، چه از طریق شجره یا چه از طریق تکامل نژادى. مقادیر گمشده در متغیر پاسخ (ها) مجاز است و داده ها تا سطحی از خطای اندازه گیری در متاآنالیز می تواند شناسایی شود. همه­ی شبیه سازی ها در C/ C++ با استفاده از برنامه CSparse برای سیستم های خطی پراکنده انجام میشود. اگر شما نرم افزار استفاده میکنید لطفا به این مقاله که در مجله Statistic Software منتشر شده (Hadfield 2010) استناد کنید.



کلمات کلیدی: MCMC ، مدل آمیخته خطی ، شجره ، تکامل نژادى ، مدل حیوانی، چند متغیره، پراکنده.

 

 

با توجه به انعطاف پذیری مدل های آمیخته خطی، در حال حاضر آنها به طور گسترده ای در علوم مختلف استفاده می شوند (Brown and Prescott 1999; Pinheiro and Bates 2000; Demidenko 2004). با این حال، تعمیم این مدل به داده های غیر گوسی دشوار است زیرا یکپارچه سازی اثرات تصادفی مقاوم مشکل است (McCulloch and Searle 2001). اگرچه تکنیک هایی که این انتگرال ها را تقریب میزنند (Breslow and Clayton 1993) در حال حاضر مرسوم هستند، روش زنجیره مارکوف مونت کارلو (MCMC) یک استراتژی جایگزین برای به حاشیه راندن عوامل تصادفی قوی تر ارائه میکند (Zhao, Staudenmayer, Coull, and Wand 2006; Browne and Draper 2006) پژوهش بر روی توسعه روش MCMC برای تعمیم مدل های آمیخته خطی (GLMM) بسیار فعال است (Zeger and Karim 1991; Damien, Wakefield, and Walker 1999; Sorensen and Gianola 2002; Zhao et al. 2006). و در حال حاضر چندین بسته نرم افزاری برای اجرای این تکنیک موجود است (به عنوان مثال WinBUGS (Spiegelhalter, Thomas, Best, and Lunn 2003), MLwiN (Rasbash, Steele, Browne, and Prosser 2005), glmmBUGS (Brown 2009), JAGS (Plummer 2003)). با این حال، این روش اغلب نیازمند تجربه و تخصص کاربر بوده و ممکن است محاسبه زمان­بر باشد. بسته MCMCglmm برای R (تیم هسته توسعه R، 2009) از روش زنجیره مارکوف مونت کارلو برای دستیابی به چند پاسخ تعمیم مدل های خطی آمیخته استفاده میکند. طیف وسیعی از توزیع ها پشتیبانی می شوند و انواع مختلفی از ساختار واریانس برای اثرات تصادفی و باقی مانده می تواند اجرا شود. هدف ارائه روشی است که به تخصص کم کاربر نیاز داشته در حالی که میزان زمان محاسبات لازم برای توزیع کافی نمونه را کاهش میدهد.

 

در این مقاله ما ساختار بنیادین GLMM و سپس به طور خلاصه یک استراتژی کلی برای تخمین پارامترها را توضیح میدهیم. چندین نتیجه جدید ارائه شده است، و ما میخواهیم اذعان کنیم که بسیاری از نتایج آماری را می توان در Sorensen and Gianola (2002) پیدا کرد و بسیاری از جزئیات الگوریتم که اجرای خوب مدل را فراهم می کند، را می توان در Davis (2006) یافت. متن اصلی مقاله نرم افزار را با استفاده از یک مثال از آزمایش ژنتیکی کمی معرفی می کند. ما با مقایسه روش ها با WinBUGS (Spiegelhalter et al. 2003) کار را تمام کردیم و نتیجه گرفتیم که MCMCglmm نزدیک به 40 برابر در هر تکرار سریعتر است، و اندازه نمونه­ای 3 برابر بیشتر در هر تکرار دارد.

 




چطور این فایل رو دانلود کنم؟
برای دانلود فایل کافیه روی دکمه "خرید و دانلود" کلیک کنید تا صفحه "پیش فاکتور خرید" برای شما باز شود و مشخصات (نام و نام خانوادگی ، تماس و ایمیل ) رو با دقت ثبت کنید و روی دکمه "پرداخت آنلاین" کلیک کنید بعد از پرداخت هزینه از طریق سیستم بانکی به سایت برگشت داده میشوید و صفحه دانلود برای شما نمایش داده میشود

آیا فایل رو بلافاصله بعد از خرید تحویل می گیرم؟
بله. بلافاصله بعد از پرداخت آنلاین ، صفحه دانلود فایل برای شما نمایش داده میشود و می توانید فایل خریداری شده را دانلود نمایید

نمی توانم به صورت آنلاین خرید انجام دهم
در صورتی که امکان پرداخت آنلاین برای شما میسر نمی باشد می توانید هزینه فایل را به صورت آفلاین ( کارت به کارت) پرداخت نمایید تا فایل برای شما ارسال شود برای این کار کافیست در پیش فاکتور خرید مراحل خرید آفلاین را دنبال کنید

هزینه رو پرداخت کردم اما نمی توانم فایل را دانلود کنم
در سایت ام پی فایل چند روش پشتیبانی برای راحتی شما در نظر گرفتیم تا با سرعت بیشتری به پیام های شما رسیدگی کنیم. برای دریافت سریع فایل می تونید از گزینه پیگیری پرداخت یا تماس با ما (واقع در منوی بالای سایت) و یا از طریق شماره 09395794439 با ما در ارتباط باشید .

فایل دانلود شده با توضیحات ارائه شده مطابقت ندارد
اگر فایل با توضیحات ارائه شده توسط فروشنده همخوانی ندارد کافیست از طریق قسمت تماس با ما یا شماره 09395794439 با ما در میان بگذارید تا پیگیری های لازم صورت گیرد و فایل اصلی برای شما ارسال شود در صورتی که به هر دلیلی فایل اصلی در دسترس نباشد هزینه پرداختی شما برگشت داده میشود

برای به مشکل نخوردن در زمان خرید چه اقدامی انجام دهم ؟
برای اینکه در زمان پرداخت آنلاین به مشکل برخورد نکنید باید V P N خاموش باشد و از مرورگرهای موزیلا فایرفاکس و کروم استفاده کنید. و ضمنا در صفحه "پیش فاکتور خرید" مشخصات خود را به شکل صحیح وارد کنید تا در پیگیری های بعدی با مشکل مواجه نشوید
45462 فایل های سایت
487 کاربران سایت
45202 فروش موفق
41,517 بازدید امروز
پشتیبانی